THE REACTION OF $Cl_3P = N - P(O)Cl_2$ WITH MERCAPTANS

Aleš Mareček

Department of Inorganic Chemistry, Masaryk University, 611 37 Brno

Received December 15, 1989 Accepted March 26, 1990

In reactions of $Cl_3P=N-P(O)Cl_2$ with mercaptans in the presence of pyridine as a hydrogen chloride acceptor, the compounds $(RS)_3P=N-P(O)Cl_2$ ($R = C_2H_5$ -, C_3H_7 -, C_8H_{17} -) were found to be the final products. The hitherto unknown $(RS)_2ClP=N-P(O)Cl_2$ was also identified in the reaction mixture by ³¹P NMR spectroscopy.

The study¹ of alcoholysis of trichlorophosphazene-N-(phosphoryl dichloride) revealed the formation of not only compounds of the type $(RO)_nCl_{3-n}P=N--P(O)Cl_m(OR)_{2-m}$ (n = 1-3, m = 1, 2) but also of $(RO)ClP(O)NHP(O)Cl_2$ and their alcoholysis products. All the derivatives except $(RO)_3P=N-P(O)Cl(OR)$ were identified by ³¹P NMR spectroscopy, although only $(RO)Cl_2P=N-P(O)Cl_2$ and $[(RO)_2PO]_2NH$ were isolated as the final reaction products.

The analogous reaction with mercaptans, which has not been so far studied, is the objective of the present work.

EXPERIMENTAL

Preparation of $(C_2H_5S)_3P=N-P(O)Cl_2$. An amount of 24.0 g of $Cl_3P=N-P(O)Cl_2$ in 200 cm³ of absolutized diethyl ether were mixed with 17.4 g of ethyl mercaptan at room temperature, and 22.2 g of pyridine (molar ratio about 1:3:3) in 120 cm³ of diethyl ether were added dropwise to the vigorously stirred solution within a period of 2.5 h, whereafter the mixture was stirred for another 3 h. The separated $C_2H_5N.HCl$ was filtered out, and diethyl ether was distilled off in a vacuum. An amount of 28.9 g of $(C_2H_5S)_3P=N-P(O)Cl_2$ (93.8% theory with respect to $Cl_3P=N-P(O)Cl_2$) were obtained in the form of a gold-yellow viscous liquid. The propyl and octyl derivatives were also obtained in yields exceeding 90%.

The same results were also arrived at when using the starting reactant molar ratio 1:5:5. Attempted substitution of the two chlorine atoms in the $-P(O)Cl_2$ group, performed by heating the reaction mixture with this reactant ratio in a scaled ampoule at $100^{\circ}C$, resulted in a destruction of the phosphazene skeleton. Replacement of alkyl mercaptan by its sodium salt gave a similar result even at room temperature. The reaction did not proceed at all if pyridine, the hydrogen chloride acceptor, was absent.

The mass spectrum was measured on a JEOL JMS-0156-2 instrument (ionization energy 75 eV). ³¹P NMR spectra of the diethyl ether solutions were measured at 25° C on a BRUKER AM-400 FT spectrometer (161.978 MHz) using 85% phosphoric acid as the external standard.

For $(C_2H_5S)_3P = N - P(O)Cl_2$ (346.1) calculated: 20.82% C, 4.34% H, 20.50% Cl, 4.05% N, 17.92% P, 27.75% S; found: 21.00% C, 4.30% H, 19.21% Cl, 5.00% N, 17.60% P, 26.35% S. ³¹P NMR (δ , ppm): 58·1 d, -11·8 d; ²J(P, P) = 13·2 Hz. The mass spectrum exhibited the following fragments m/z (%): 345 (12, M⁺), 310 (4), 285 (88), 224 (100), 163 (2).

For $(C_3H_7S)_3P = N - P(O)Cl_2$ (388·1) calculated: 27.84% C, 5.41% H, 18.28% Cl, 3.61% N, 15.98% P. 24.75% S; found: 28.12% C, 5.50% H, 18.67% Cl, 4.70% N, 15.25% P, 24.01% S. ³¹P NMR (δ , ppm): 56·3 d, -9·6 d; ²J(P,P) = 9·4 Hz.

For $(C_8H_{17}S)_3P = N - P(O)Cl_2$ (598.3) calculated: 48.17% C, 8.53% H, 11.86% Cl, 2.34% N, 10.37% P, 16.06% S; found: 49.00% C, 8.70% H, 12.21% Cl, 3.29% N, 8.86% P, 16.09% S. ³¹P NMR (δ , ppm): 56.5 d, -9.5 d; ²J(P, P) = 10.2 Hz.

RESULTS AND DISCUSSION

The ³¹P NMR spectra of reaction mixtures of $Cl_3P=N-P(O)Cl_2$ with ethyl mercaptan at molar ratios higher than 1:5, scanned applying proton decoupling, exhibited a pair of doublets with shifts of $\delta = 58.1$ and -11.8 (²J(P, P) = 13.2 Hz). Without proton decoupling, the doublet with the former shift was split into a multiplet comprising 14 bands (${}^{3}J(H, P) = 17.2 \text{ Hz}$) whereas the doublet with the latter shift remained unchanged. This suggests that the reaction product is $(C_2H_5S)_3P=N -P(O)Cl_2$; this assumption is also born out by elemental analysis as well as the mass spectrum. The results for propyl and octyl mercaptans were analogous.

Preparation of $(C_2H_5S)_2ClP=N-P(O)Cl_2$ and $(C_2H_5S)Cl_2P=N-P(O)Cl_2$ was attempted by altering the reaction conditions. The molar ratio of the reactants was varied over the range of 1:0.8 to 1:2 and temperature, over the range of 20 to -10° C. The ³¹P NMR spectra exhibited invariably three pairs of doublets. Those with shifts of $\delta = 0$ and -13.6 (²J(P, P) = 17.4 Hz) were due to the unreacted $Cl_3P = N - P(O)Cl_2$, whereas two doublets belonged to the reaction product, $(C_2H_5S)_3P = N - P(O)Cl_2$; the last pair of doublets displayed shifts of $\delta = 50.2$ and $-11\cdot 3$ (²J(P, P) = 15.7 Hz), the former splitting into 10 bands in the nondecoupled spectrum. This suggests that these doublets belong to $(C_2H_2S)_2CIP = N_{--}$ $-P(O)Cl_2$, whose isolation from the reaction mixture, however, failed. ³¹P NMR spectroscopy also failed to prove the occurrence in the reaction mixture of (C_2H_2S) . $.Cl_2P = N - P(O)Cl_2$, which ought to be the first-step intermediate.

In conclusion, the results indicate that $Cl_3P = N - P(O)Cl_2$ reacts with mercaptans in a manner different from the reaction with alcohols. Although in both reactions it is the chlorine atoms in the =PCl₃ group that react preferentially, the reaction with mercaptans involves no formation of imido-bis(phosphoric acid) derivatives or compounds with more than three RS- groups in the phosphazene molecule.

REFERENCES

1. Riesel L., Pfützner A.: Z. Chem. 20, 98 (1980).

Translated by P. Adámek.